Moduli of continuity and average decay of Fourier transforms: two-sided estimates

نویسندگان

  • Dimitri Gioev
  • DIMITRI GIOEV
چکیده

Abstract. We study inequalities between general integral moduli of continuity of a function and the tail integral of its Fourier transform. We obtain, in particular, a refinement of a result due to D. B. H. Cline [2] (Theorem 1.1 below). We note that our approach does not use a regularly varying comparison function as in [2]. A corollary of Theorem 1.1 deals with the equivalence of the two-sided estimates on the modulus of continuity on one hand, and on the tail of the Fourier transform, on the other (Corollary 1.5). This corollary is applied in the proof of the violation of the so-called entropic area law for a critical system of free fermions in [4, 5].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moduli of Continuity and Average Decay of Fourier Transforms: Two-sided Estimates and a Cantor Type Example

Following D. B. H. Cline [Cl], we study the connections between the behavior of the spherical mean of an L modulus of continuity corresponding to the finite difference of an arbitrary order m > 0 of a function f ∈ L(R), 1 ≤ p ≤ ∞, d ∈ N, and the average decay of the Fourier transform f̂ . We obtain an estimate which refines one result from [Cl] for 1 ≤ p ≤ 2. Our main interest is in two-sided es...

متن کامل

Moduli of smoothness and growth properties of Fourier transforms: Two-sided estimates

We prove two-sided inequalities between the integral moduli of smoothness of a function on R d /T d and the weighted tail-type integrals of its Fourier transform/series. Sharpness of obtained results in particular is given by the equivalence results for functions satisfying certain regular conditions. Applications include a quantitative form of the Riemann–Lebesgue lemma as well as several othe...

متن کامل

Average Decay Estimates for Fourier Transforms of Measures Supported on Curves

We consider Fourier transforms b μ of densities supported on curves in R. We obtain sharp lower and close to sharp upper bounds for the decay rates of ‖b μ(R·)‖Lq(Sd−1), as R → ∞.

متن کامل

Sharp Rate of Average Decay of the Fourier Transform of a Bounded Set

Estimates for the decay of Fourier transforms of measures have extensive applications in numerous problems in harmonic analysis and convexity including the distribution of lattice points in convex domains, irregularities of distribution, generalized Radon transforms and others. Here we prove that the spherical L-average decay rate of the Fourier transform of the Lebesgue measure on an arbitrary...

متن کامل

Estimates for the Generalized Fourier-Bessel Transform in the Space L2

Some estimates are proved for the generalized Fourier-Bessel transform in the space (L^2) (alpha,n)-index certain classes of functions characterized by the generalized continuity modulus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008